ln(x^2+x+1)+x+x^4=0

Simple and best practice solution for ln(x^2+x+1)+x+x^4=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ln(x^2+x+1)+x+x^4=0 equation:


Simplifying
ln(x2 + x + 1) + x + x4 = 0

Reorder the terms:
ln(1 + x + x2) + x + x4 = 0
(1 * ln + x * ln + x2 * ln) + x + x4 = 0
(1ln + lnx + lnx2) + x + x4 = 0

Solving
1ln + lnx + lnx2 + x + x4 = 0

Solving for variable 'l'.

Move all terms containing l to the left, all other terms to the right.

Add '-1x' to each side of the equation.
1ln + lnx + lnx2 + x + -1x + x4 = 0 + -1x

Combine like terms: x + -1x = 0
1ln + lnx + lnx2 + 0 + x4 = 0 + -1x
1ln + lnx + lnx2 + x4 = 0 + -1x
Remove the zero:
1ln + lnx + lnx2 + x4 = -1x

Add '-1x4' to each side of the equation.
1ln + lnx + lnx2 + x4 + -1x4 = -1x + -1x4

Combine like terms: x4 + -1x4 = 0
1ln + lnx + lnx2 + 0 = -1x + -1x4
1ln + lnx + lnx2 = -1x + -1x4

Reorder the terms:
1ln + lnx + lnx2 + x + x4 = -1x + x + -1x4 + x4

Combine like terms: -1x + x = 0
1ln + lnx + lnx2 + x + x4 = 0 + -1x4 + x4
1ln + lnx + lnx2 + x + x4 = -1x4 + x4

Combine like terms: -1x4 + x4 = 0
1ln + lnx + lnx2 + x + x4 = 0

The solution to this equation could not be determined.

See similar equations:

| 7(8z+2)=8(7z-7) | | ln(x^2+x+1)x+x^4=0 | | 8(a+2)=a+2 | | 4b+9=8b-1 | | 5x+6y=70 | | 13x=(4x+x)2-3x-(4-x)2 | | 13x=(4x+x)*2-3x-(4-x)*2 | | 9a+4=9a+5 | | 2(3*4)+(4+1)= | | 13x=(4+x)*2-3x-(4-x)*2 | | 3x^2-6x+15=-16 | | 8-(3+x)+10x=10*x | | 3y+2=5y+2 | | 2-0.43x=-0.19 | | cotx(cos^2x-4)=0 | | cotx(cosx-4)=0 | | 8b+6=6b | | 4+x=3-4x | | (4y-5x)= | | x(2x+13)= | | a=xy+b | | 4x(3x+1)= | | (D^3-3D-2)y=0 | | Log[2](X+3)+log[2](x^2+5x-4)=3 | | 5x=26+3x | | byI(t)=2t^3-3t+4 | | 4b+8=28 | | 3y+5=5y+14 | | -26+3v=-52+17x | | 6r-4=2r+7 | | 6r-11=2r+7 | | 9+3=71 |

Equations solver categories